If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then

  • A

    ${{{\vec v}_1}}$ is parallel to ${{{\vec v}_2}}$

  • B

    ${{{\vec v}_1} = {{\vec v}_2}}$

  • C

    $\left| {{{\vec v}_1}} \right| = \left| {{{\vec v}_2}} \right|$

  • D

    ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are mutually perpendicular

Similar Questions

Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then

Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)

Three girls skating on a circular ice ground of radius $200 \;m$ start from a point $P$ on the edge of the ground and reach a point $Q$ diametrically opposite to $P$ following different paths as shown in Figure. What is the magnitude of the displacement vector for each ? For which girl is this equal to the actual length of path skate ?

The angle between vector $\vec{Q}$ and the resultant of $(2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}})$ and $(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})$ is:

  • [JEE MAIN 2024]

In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$

  • [JEE MAIN 2021]